
Partial Solution Set, Leon §6.3

6.3.1a We are to find a matrix X that diagonalizes A =

[
0 1
1 0

]
. The eigenvalues of A in

this case are λ1 = 1 and λ2 = −1. By Theorem 6.3.2, such a matrix X exists, and
the columns of X are eigenvectors of A corresponding to the eigenvalues. In the usual

fashion, we find eigenvectors x1 = (1, 1)T and x2 = (1,−1)T . So X =

[
1 1
1 −1

]
, and

X−1 = 1
2

[
1 1
1 −1

]
. It is easy to verify that X−1AX = D =

[
1 0
0 −1

]
, so A = XDX−1.

6.3.1b As in (a), but with A =

[
5 6

−2 −2

]
. The eigenvalues are λ1 = 1 and λ2 = 2.

An eigenvector associated with λ1 is x1 = (−3, 2)T , and an eigenvector associated with

λ2 is x2 = (−2, 1)T . So X =

[
−3 −2

2 1

]
, and X−1 =

[
1 2

−2 13

]
. As expected,

D = X−1AX =

[
1 0
0 2

]
.

6.3.1d As in (a) and (b), but now A =

 2 2 1
0 1 2
0 0 −1

. The eigenvalues are λ1 = 2, λ2 = 1,

and and λ3 = −1. The associated eigenvectors are (any scalar multiples of)

x1 = (1, 0, 0)T ,x2 = (−2, 1, 0)T , and x3 = (1,−3, 3)T . So X =

 1 −2 1
0 1 −3
0 0 3

, and

X−1 =

 1 2 5
3

0 1 1
0 0 1

3

.

6.3.4a Given A =

[
2 1

−2 −1

]
, find a matrix B such that B2 = A. In other words, find a

square root for A. This is easily done using diagonalization, i.e., once we factor A =

XDX−1, the matrix B that we are after is B = XCX−1, where C = (cij) = (
√

dij). We
start by finding the eigenvalues of A. Since A is clearly singular, we know that λ1 = 0
is an eigenvalue; we find that the other is λ2 = 1. At this point, we can either press on,
finding a pair of eigenvectors, or observe that if D is diagonal with d11 = 0, d22 = 1, then
either C = −D or C = D. This suggests that both A and −A might have the desired
property, and this in fact turns out to be the case.

6.3.4b This is a bit more work, but at least A =

 9 −5 3
0 4 3
0 0 1

 is triangular and we don’t have



to work hard to find eigenvalues 9, 4, and 1. The usual process leads to X =

 1 1 −1
0 1 −1
0 0 1


and X−1 =

 1 −1 0
0 1 1
0 0 1

. Thus A =

 1 1 −1
0 1 −1
0 0 1


 9 0 0

0 4 0
0 0 1


 1 −1 0

0 1 1
0 0 1

. Setting

B =

 1 1 −1
0 1 −1
0 0 1


 3 0 0

0 2 0
0 0 1


 1 −1 0

0 1 1
0 0 1

 =

 3 −1 1
0 2 1
0 0 1

 ,

it is easily verified that B2 = A.

6.3.6 Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1. Show that
A−1 = A.

Proof: There is no question about the existence of A−1, since A has strictly nonzero
eigenvalues. Since A is diagonalizable, we can construct A such that A = XDX−1, where
D is a diagonal matrix containing the eigenvalues of A, i.e., every diagonal entry is either
1 or -1. But then D−1 = D, so

A−1 =
(
XDX−1

)−1
= XD−1X−1 = XDX−1 = A,

which is what we needed to show. 2

6.1.7 Show that any 3× 3 matrix of the form

 a 1 0
0 a 1
0 0 b

 is defective.

Proof: By inspection, the eigenvalues of A are a, with algebraic multiplicity two, and b.
We must show that the geometric multiplicity of a is less than two. To do this, we first

form A− aI =

 0 1 0
0 0 1
0 0 b− a

. Notice that if x = (x1, x2, x3)
T is any eigenvector for a,

then x2 = x3 = 0, so x = se1 for some scalar s. It follows that the geometric multiplicity
of a is dim(N(A− aI)) = 1 < 2, and A is defective. 2

Note: It would suffice to observe that rank(A− aI) = 2, which forces null(A− aI) = 1.

6.3.8c We are given a square matrix

A =

 1 2 0
2 1 0
2 −1 α

 ,

2



and challenged to find values of α for which A is defective. We begin by calculating the
characteristic equation of A, which is

P (λ) = (α− λ)
[
(1− λ)2 − 4

]
= (α− λ)(λ− 3)(λ− 1).

The eigenvalues are 3,−1, and α. If α 6∈ {−1, 3}, then A is diagonalizable. We must
check the dimension of N(A− αI) for α = −1 and α = 3. If α = 3, then

A− αI =

 −2 2 0
2 −2 0
2 −1 0

 ,

a matrix of rank 2. It follows that dim(N(A − 3I)) = 1, but then A must be defective.
The procedure for α = −1 follows the same lines, and yields a similar conclusion.

6.3.9 Let A be a 4× 4 matrix, and let λ be an eigenvalue of multiplicity 3. If A−λI has rank
1, is A defective?

Solution:

No, if A− λI has rank 1, then the geometric multiplicity of λ is 4− 1 = 3, equal to the
algebraic multiplicity of λ.

6.3.17 Let A be a diagonalizable n× n matrix. Prove that if B is any matrix that is similar
to A, then B is diagonalizable.

Proof: Suppose A and B are as described, and let X be a matrix that diagonalizes A.
So A = XDX−1 and B = S−1AS for some nonsingular S. But then

B = S−1XDX−1S = (S−1X)D(S−1X)−1

is diagonalizable. 2

As a corollary, we get another proof that similar matrices have the same eigenvalues,
along with a strong suggestion that in general they have different eigenvectors.
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